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Abstract: Wind power generation has been the fastest-growing energy alternative in recent years,
however, it still has to compete with cheaper fossil energy sources. This is one of the motivations to
constantly improve the efficiency of wind turbines and develop new Operation and Maintenance
(O&M) methodologies. The decisions regarding O&M are based on different types of models,
which cover a wide range of scenarios and variables and share the same goal, which is to minimize
the Cost of Energy (COE) and maximize the profitability of a wind farm (WF). In this context,
this review aims to identify and classify, from a comprehensive perspective, the different types of
models used at the strategic, tactical, and operational decision levels of wind turbine maintenance,
emphasizing mathematical models (MatMs). The investigation allows the conclusion that even
though the evolution of the models and methodologies is ongoing, decision making in all the areas of
the wind industry is currently based on artificial intelligence and machine learning models.

Keywords: strategy and maintenance tactics; maintenance methodologies; mathematical models;
failures; prediction

1. Introduction

After the investment in the feasibility study and the acquisition and installation of a wind turbine
(WT), the main costs incurred during the useful life of a wind power generation project are those
corresponding to operation and maintenance (O&M). For this reason, since the United States installed
the first wind turbine (between 1887 and 1888) and the feasibility of using wind to generate electrical
energy was demonstrated [1], questions related to O&M arose. The O&M strategy has a direct impact
on the cost of energy (COE) produced and on a wind energy project’s profitability [2].

There is a large number of studies that try to optimize the O&M of wind farms (WFs) by
applying different approaches and methodologies, but in all cases, the goal is to optimize the cost by
determining the exact moment at which maintenance has to be performed; the time interval between
each intervention, repair and replacement of a part, maintenance tasks and inspections; the monitoring
system; the human resources; the organizational structure; and the redesign of the equipment to
improve reliability, maintainability and capability. All of the above are within an environment that
includes care for the environment, occupational health, elimination of occupational risks, inventory
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reduction, failure prognosis and assurance of the continuity of the services without interruption and
with high quality standards such that all the people and institutions involved benefit [3].

Jardine and Tsang [4] defined maintenance as “all activities aimed at keeping an item in, or
restoring it to, the physical state considered necessary for the fulfillment of its production function,”
for which, according to [5], there is a need for technical skills, engineering knowledge, methodologies
and scientific theories. The comprehensive management of the physical assets of a company is known
as physical asset management (PAM) and includes purchases according to technical specifications,
planning, operation, performance evaluation, improvements and disposal.

When it is decided to perform maintenance, it is necessary to make decisions at various
hierarchical levels that go from the management to the operational positions. Hilber [6] classifies
decision making into maintenance strategies, maintenance support organization and maintenance
planning. Bertling and Wennerhag [7] divided the decision-making process regarding maintenance
into strategy (long-term decisions), which involves design, location, installation dimensions,
maintenance strategy and outsourcing services; tactics (medium-term), which involve the management
of inventories (supplies) and organizational structure of the maintenance area; and operations
(day-to-day), which involve maintenance scheduling and measurement of its performance. According
to the author, the model is “strategic/tactical/operational.” Shafiee [8] claims that the strategic
decisions regarding maintenance include selection of the total replacement and economic life models,
consideration of the technological factors and forecasting of resources to ensure competitiveness.
The tactical decisions (medium-term maintenance) involve the selection of a correct maintenance
policy, such as corrective, via inspection, and based on age or condition. The operational (short-term)
level includes maintenance planning and scheduling. To achieve excellence in maintenance, Jardine
and Tsang [4] divided decision making into the following:

• Strategy: Resource requirements, planning, planning horizon, objectives.
• Tactics: Planning; scheduling; inventory management; statistical processing of the information;

legal aspects; compliance with the standards; status of the work orders, process and control the
processes; selection of the methodology to monitor, detect, diagnose and repair failures; financial
indicators; safety; production; etc.

• Continuous improvement: This is done through Total Productive Maintenance (TPM) and
Reliability-Centered Maintenance (RCM).

Despite the classification observed thus far, in some cases, it is not easy to distinguish to which
level a decision belongs. It could be that what is strategic for one company corresponds to the tactical
part of another company. Within an organization, the tactics of one level usually become the strategy
adopted by a lower level. According to [9], in the field of maintenance management, a strategy refers
to the tactical alternatives for managing specific physical assets, whereas decisions regarding applying
preventive maintenance (PM) or predictive maintenance considered as maintenance strategies have to
be considered as tactical. Regardless of the level at which they are made, the decisions are based on
management and mathematical models.

Based on the principle that a model is the representation of a system, the models can be physical,
schematic, verbal and mathematical. The evolution of the methodologies applied to maintenance
have paralleled the constant technological advance of wind turbines, owing to the development and
application of a variety of models that try to cover multiple complex and uncertain scenarios that can
be presented at any decision level [10,11].

Despite the very large number of publications on models applied to the maintenance of wind
turbines, these studies usually cover very specific subjects. For this reason, this review aims to provide
a comprehensive view regarding the types of predominant maintenance models in the wind industry, at
the different levels of decision making (strategic, tactical and operational), with the goal of determining
the appropriate time at which maintenance has to be performed, but without intervening before it is
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necessary; reducing interruptions; increasing the useful life of the equipment; improving reliability;
and minimizing the costs.

Due to the large number of models included, their description, analysis and comparison are
not within our goals. The interested reader can subsequently deepen their knowledge about some
particular model, in addition to identifying the lack of application of certain models, which could lead
to new investigations. To achieve the goal of this work, a description and classification of the most
important models used at the strategic and tactical levels is performed in Section 2, starting from the
general and conceptual to the area specifically related to the wind industry. Section 3 addresses the
models applied at the operational level, emphasizing MatMs. The fourth section can be considered
as a follow-up regarding the models applied at the operational level for the detection, diagnose and
prognosis of wind turbine failures. The fifth section includes the conclusions and recommendations.

2. Types of Models Applied at the Strategic and Tactical Levels

All decisions (including tactical and operational) involve a strategy that describes the direction to
follow to achieve an objective. An example would be the decision of applying maintenance with the
intention of reducing costs, increasing reliability, improving safety and respecting the environment.
The means and methods to achieve this are the tactics. These strategic decisions have to ensure adequate
supply chain management (SCM), performance management, work management and information
systems to finally choose the best maintenance methodology, such as RCM, Failure Mode and Effects
Analysis (FMEA), Failure Mode, Effects and Criticality Analysis (FMECA) and Preventive Maintenance
Optimization (PREMO). Leadership in designing, applying and maintaining an adequate maintenance
strategy is the basis for success [12,13].

Generally, the company that installs the WF provides the maintenance during the first years of
operation. After this initial step, one of the most important strategic decisions of the owners consists of
operating the WFs themselves, whereas the maintenance activities are delegated to another company.
Other important strategic decisions include parts inventories, overall repowering to increase the useful
life, or replacement, whether it be parts, such as the gearbox, or even the entire WT [14].

The companies that specialize in maintenance will adopt their own tactical and operational
strategies to ensure the compliance of the signed contract, which is usually evaluated according to the
WF availability. The applied strategies are not very different from the ones used by the industry in
general, but the remoteness of the location, difficulty of access, operating height of the wind turbines,
particular features of these types of machines, sudden variations of the environmental conditions and
loads to which they are exposed cause maintenance in the wind industry to have characteristics that
makes it unique, for which there is currently a wide range of models being applied to the O&M of
WTs [15] (see Figure 1).

The main maintenance strategies are TPM, which is a methodology of continuous improvement
based on what has been done by people [16–20]; Total Quality Maintenance (TQMain), whose
philosophy is the continuous improvement of processes via empowerment of workers [3]; Lean
Six Sigma (LSS) [21]; 5S [22]; E-maintenance [23]; and lean maintenance, which focuses on reducing
the waste in any process, integrating the supply chain and increasing the value for the organization
and the customers [24,25]. All these strategies are set within the Japanese philosophy of Total Quality
Management (TQM) and are the basis of the tactical and operational strategy of the maintenance
system [26,27].

One of the main objectives of any maintenance program is to obtain the highest reliability and
availability at the lowest possible cost. With this goal, a variety of methodologies and MatMs have
been developed, which have given rise to what is known as RCM. According to [28], “Reliability-
centered maintenance is a systematic consideration of system functions, the way functions can fail,
and a priority-based consideration of safety and economics that identifies applicable and effective
PM tasks”.
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The goal is to extend the time between failure occurrences, reduce the amount of maintenance,
decrease downtime and increase the useful life of the equipment through a methodology that, according
to [29], is based on seven questions:

• What are the functions and associated desired standards of performance of the asset in its present
operating context?

• In what manners can it fail to fulfill its functions?
• What causes each functional failure?
• What happens when each failure occurs?
• In what manner does each failure matter?
• What should be done to predict or prevent each failure?
• What should be done if a suitable proactive task cannot be found?

According to the literature, RCM is the predominant methodology in the maintenance of wind
turbines [30]. For this, it is supported by models such as FMEA, FMECA and Root Cause Failure
Analysis (RCFA), which in turn include Hazard and Operability Studies (HAZOPs), critical task
analysis, quantified risk analysis, the structured what-if technique, fault tree analysis, event tree
analysis, cause-effect logic diagrams, the accident evolution and barrier technique, work safety analysis,
change analysis and human error probability studies, each with its own subcategories (see Figure 2).

FMEA is a methodology in which the components of a system are examined in detail through a
systematic process to identify the parts that can fail, the manners in which these failures occur, their
origin, their degree of importance and the effects on the equipment performance such that based on
this analysis, preventive measures can be adopted before the failure occurs, minimizing the risk and
its possible negative effects. In the FMEA methodology, the probability of occurrence of failure, its
detection and the magnitude of the effects are weighted according to certain scales and multiplied
to obtain the Risk Priority Number (RPN). Given that the failures related to equipment can occur at
different stages, there are specific FMEA methodologies for each of them, such as design (DFMEA),
manufacture (PFMEA), operation, control and personnel training [31–34]. Another methodology
used for determining the causes, consequences and importance of an equipment or system failure is
Criticality Analysis (CA). CA uses qualitative and quantitative techniques, such as risk assessment
techniques and the Analytical Hierarchy Process (AHP). The level of criticality and importance
associated with the failure will be a function of the effects’ magnitude, [16,35]. When FMEA is
combined with CA, FMECA is obtained [36–41].

Through the “Relex Reliability Studio 2007 Version 2” software package for FMECA [31]
determines the causes and the manner in which the main failures of a 2-MW turbine with a doubly
fed induction generator (DFIG) occur. In [36], a software package developed in Java Expert Shell
System (JESS) is proposed, where the information obtained by FMECA is represented by ontology
modeling to obtain an intelligent diagnostic method capable of providing the wind turbine maintenance
personnel with the locations and causes of failures. Ref. [37] uses the operation data of a wind turbine to
determine, via FMECA and CA, the main causes of overheating of the gearbox, generator and converter.

RCFA includes several methodologies (see Figure 2) that are very similar to each other, even
making them seem redundant, since, when analyzed together, they constitute a means of globally
considering all the factors that can contribute to the failures of an equipment or system. These
techniques usually consist of checklists, which, arranged in increasing order of complexity, include
simple lists, lists with cross-referencing systems, simple trees without fault tree logic and trees
incorporating fault tree logic [16].
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For identification of the possible failures in a wind turbine, García-Marquez et al. [42] apply a
qualitative analysis via Fault Tree Analysis (FTA), along with the Binary Decision Diagram (BDD)
method to optimize the FTA quantitative analysis and facilitate the identification of the critical
components under different conditions. Fault Tree (FT) consists of top events, basic events and
intermediate events connected by AND/OR logic gates. A probability of 0.01 is assigned to each event,
and the classification of the basic events with respect to their contribution to the probability of a top
event is performed based on the importance measures index, obtained using the heuristic models of
Birnbaum, criticality, structural and Fussell Vesely. The number of combinations, events or cut-sets for
the type of turbine analyzed was 173. Chou and Tu [43] apply several RCFA methods to determine the
causes of the collapse of a wind turbine tower 62 m in height.

According to the literature, of the types of maintenances available to meet the RCM objectives,
condition based maintenance (CBM) [15,44], along with a Condition Monitoring System (CMS), both
online and offline, for the acquisition and treatment of several types of signals from different types of
sensors installed throughout the entire wind turbine, is the standard in the wind industry. The use of
supervisory control and data acquisition (SCADA) systems for holistic management of the monitoring
systems should also be included [45–47]. The database obtained through the CMS is applied for
designing proposals at all decision levels (strategic, tactical and operational). Most of the management
models discussed thus far, as well as the MatMs that are considered hereinafter, are based on the
CMS. It is not surprising that when addressing the maintenance of WTs, CBM and CMS are among the
subjects involving the largest number of publications.

The final goal of the models discussed thus far (see Figure 1) is to maximize reliability and
minimize maintenance costs. With this goal, there are a variety of maintenance models (MMs), which
can be classified in several manners. In [16], the authors group the main MMs as total replacement
models (constant-interval replacement and age-based replacement), partial replacement models
(minimal repairs and normal repairs), replacement models with imperfect maintenance, shock-based
replacement models and inspection models. In [48], the authors classify the MMs into inspection,
minimal repair, impact and semi-Markov. Given that one of the main objectives is to optimize the main
variables through which the maintenance efficiency is measured, one of the manners in which these
models can be classified is according to the optimization strategy applied, as shown in Figure 3. From
a comprehensive point of view, the models shown in Figure 3 can be considered as a continuation of
Figure 1.
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Because there is more than one manner of organizing the models, Figure 4 shows an alternative
classification that expands and complements Figure 3. In every maintenance strategy and tactic,
logistics (inventories and transport) play an important role; therefore, Figure 5 shows a classification
of the methodologies used for optimizing inventory management.

Regardless of the classification, these models do not usually work in isolation, and in most cases,
the proposals are a combination of periodic maintenance (operation time and units produced), CBM
(magnitude of the signals obtained by the CMS), inspections and maintenance due to an unexpected
failure. In all these cases, there is the alternative of maintaining or replacing the component, but when
the failure is unexpected, the strategy is to perform a minimal repair to avoid downtime and to apply,
at the end of the next time interval (τ), the maintenance strategy scheduled under normal conditions
for each η × τ [54]. When a repair is performed, it is assumed that the component will go back to the
initial state that it had prior to the failure; however, there are also MatMs that consider the cases in
which the repair or inspection is imperfect [55].

Given that each of the mentioned MMs are based on and explained through one or several MatMs
(depending on the conditions under which they are applied), in the next section, a description of the
main MMs based on their associated MatMs will be provided.
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The models used to obtain the reliability of a system, diagnose the failures of a component or
determine the right time to perform the maintenance are not sufficient to determine the optimal
maintenance strategy. Quantification in currency units (costs) of the results obtained through the
model applied is necessary to perform an economic and financial analysis [30]. In this context, the
costs of an item during its life cycle are divided into Capital Expenditure (CAPEX), which is generated
when an item is bought and involves investigation, development, planning and production, and
Operating Expenditure (OPEX), which includes operation, maintenance and disposal. According
to [16], a method of summarizing these concepts is presented in Equation (1):

LCC = Cinv + Ccm + Cpm + Cpl + Crem (1)

where LCC = life cycle cost, Cinv = cost of the investment, Ccm = cost for corrective maintenance,
Cpm = cost for preventive maintenance, Cpl = cost for production loss and Crem = remainder value.
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The methodology based on the analysis of the costs during the useful life cycle is known as Life
Cycle Cost Analysis (LCCA). In an environment of high uncertainty, aiming to include a large number
of variables in different scenarios, LCCA uses most of the models seen in this section, quantifying in
currency units the results of the models used [47].

Applying FMEA and modeling the reliability through the Weibull distribution, [33] determines
the main causes of failures of the subsystems of a WT (2–3 MW), average annual failures and the costs
expected for each failure. Contrary to the conventional FMEA procedure, in this proposal, the criticality
of a failure is calculated as the total expected failure cost multiplied by the relative failure rate. According
to the analysis, wear is the main cause of failure, with the gearbox and the rotor-blades being the most
critical subsystems, which agrees with the results of studies that apply other methodologies. A very
similar proposal, but comparing onshore and offshore wind turbines, is presented in [34]. Reference [47]
finds the Net Present Value (NPV) from the sum of the annual maintenance costs during the life cycle of
the project to demonstrate that the use of the CMS is justified as long as a reduction in the production
and corrective maintenance costs is obtained. LCCA that is individually applied to WTs or to WFs, both
onshore and offshore, allows determination of the optimal strategies that include the CMS. It can be said
that each of the MMs has an associated costs model, as we will see in the following section.

3. Maintenance Types and Associated Mathematical Models

A MatM is a set of equations that represent a physical system. The equation that defines the
model is called an equation of state, and its solution allows knowing the evolution of the independent
variable, both in time and space [10,11]. MatMs can be classified in different manners, starting with a
conventional and simple form shown in Figure 6.
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Veltem [10] proposed a classification according to the space formed by the orthogonal axes S, Q
and M, where S represents the type of system (social, economic, chemical, mechanical or electrical),
Q is the objectives axis (speculation, prediction, analysis, design or control), and M corresponds to
the mathematical structure (algebraic equations, differential equations, continuous processes, discrete
processes, linear processes and black, gray and white box models). Here, the psychological, economic
and social systems belong to the black box model, whereas the electrical and mechanical systems
correspond to the white box model.

Depending on the level of knowledge that there is in how they are constructed, MatMs can
also be classified into white, gray and black box models. White box models are characterized
by their relative ease of interpretation, as their deduction is based on knowledge of physical or
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empirical principles of the system to model. They are usually expressed by algebraic and differential
equations. They include expert systems, fuzzy systems, Autoregressive Moving Average (ARMA) and
Autoregressive Integrated Moving Average (ARIMA). Black box models are based on the determination
of parameters (parametrized models) based on real or experimental data. Even though a combination
of simple basic functions is used in the parameter determinations, there is no complete knowledge
on how the final model that will be used for predicting the behavior of the system being modeled is
constructed. Examples of these models include Artificial Neural Networks (ANNs), Support Vector
Machines (SVM) and AdaBoost. Gray box models combine white and black box models; an example is
neural networks with fuzzy logic [62–64]. Reference [65] classifies the models used for determining the
reliability as follows: failure occurrence according to the probability distribution of the time to failure
(black box), deterioration process until failure (gray box) and physical process of the deterioration
(white box). Sindareh et al. [66] classify the models used for a heat recovery steam generator during
cold start-up operation into the use of thermodynamic equations with known parameters (white box),
models extracted from thermodynamic equations with unknown parameters (gray box), and neural
and fuzzy networks based on data collection (black box).

MatMs are used in all branches of science and engineering and are the tools that allow the
strategies to be implemented. Their classification can vary depending on the criteria of each area and
subarea of knowledge in which they are used. For example, referring to maintenance, a classification
alternative is to group them according to the MMs shown in Figures 1–5, but regardless of the
classification performed, the fact is that in general, all the strategies involve more than one maintenance
model and several associated MatMs [67]. A common factor between the MMs is the determination of
the reliability of the system or its components by stochastic MatMs, which, according to [68], include
probability density function f (t), probability that the life time T is within an interval (a,b), cumulative
distribution function F(t), reliability function R(t) and failure rate function λ(x) that are given by the
Equations (2)–(6) respectively: ∫ ∞

0
f (t)dt = 1 (2)

P(a ≤ T ≤ b) =
∫ b

a
f (t)dt (3)

F(t) = P(T ≤ t) =
∫ t

0
f (u)du (4)

R(t) = P(T > t) =
∫ ∞

t
f (u)du (5)

λ(t) = lim
∆t→0

(
F(t + ∆t)− F(t)

∆tR(t)

)
=

f (t)
R(t)

(6)

To obtain F(t) prior to the failure, the following MatMs, referred to as distributions, are
used: Weibull, exponential, log-normal, Rayleigh, gamma, Birnbaum-Saunders, Gaussian (normal),
inverse Gaussian, binomial, geometrical and Poisson (point processes, homogeneous Poisson process,
nonhomogeneous Poisson process or power law process) [27], with Weibull being the first used in
reliability studies [69,70]. These distribution functions are defined with the shape parameter β and the
scale parameter η, obtained via statistical analysis of data of the system or component.

With MatMs Equation (2) through Equation (6), the Remaining Useful Life (RUL), Mean Time
To Failure (MTTF) and Mean Time Between Failure (MTBF) can be obtained, in addition to deriving
the availability [68], which is another method of measuring the reliability and one of the main wind
industry indicators, as it allows knowing the time that the wind turbines could operate and the
theoretical amount of energy that could be generated. The importance of the availability has made
it the subject of many studies and MatM proposals for its determination and optimization [71–73].
The model for determining the COE is a function of the availability and the O&M costs [15]. Currently,
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a trending topic is RUL prognosis [17]. In Section 4.2, a considerable number of models designed with
this goal will be discussed.

In [74], the authors propose a failure and reliability model of a wind system (component, WT or
WF) based on the Weibull distribution and the bathtub curve. In the early failure period (β < 1), the
failure rate decreases with time, and the reliability is modeled through a Non-Homogeneous Poisson
Process (NHPP) or Power Law Process (PLP). During the useful life period (β = 1), it is considered that
the failures occur at a constant rate and are extrinsic and independent of the operation time, and the
reliability is modeled by a Homogeneous Poisson Process (HPP). In the deterioration stage (β > 1), the
failures increase with time, and the reliability or wear is described by a PLP. In these models, other
parameters are also considered, such as Mean Time To Repair (MTTR), O&M costs, weather conditions,
load variations and network effects. To determine the reliability of wind turbines with a capacity of
225 kW, in [69], the authors also use the Weibull distribution. The failure duration data were entered in
the 6th version of Reliasoft’s Weibull software package to obtain the following properties: the Weibull
cumulative density function F(t), reliability function Weibull distribution R(t), Weibull failure rate
function λ(t), median and mode. A practical application of the SCADA data for studying the reliability
and O&M can be found in [72].

Further exploration of each model and the large number of related proposals would require dozens
of books, so as mentioned above, in this section, we will restrict our attention to the identification and
brief description of the most commonly applied models in the wind industry, following the classifications
of [16,49].

3.1. Replacement Models

According to [16], the replacement models assume two basic modalities:

(a) Total replacement (constant interval and age-based)

In this model, the replacement can be corrective (due to a failure) or preventive. The latter can be
at constant interval, due to a failure or when the equipment reaches a certain life time or production
units (age-based maintenance). The goal is to determine the time interval between two replacements to
minimize the total expected cost defined by Equations (7) and (8). When the replacement is age-based,
the TEC is given by Equations (9) and (10). The optimal tp is the one that minimizes the TEC:

TEC
(
tp
)
=

cp + ccN
(
tp
)

tp
(7)

N
(
tp
)
=
∫ tp

0
λ(t)dt =

∫ tp

0

f (t)
R(t)

=
∫ tp

0

f (t)
1− F(t)

(8)

TEC
(
tp
)
=

cpR
(
tp
)
+ ccF

(
tp
)

tpR
(
tp
)
+ M

(
tp
)

F
(
tp
) (9)

M
(
tp
)
=
∫ tp

−∞

t f (t)dt
F
(
tp
) (10)

where TEC = Total expected cost per unit time, tp = Preventive replacement time, cp = Preventive
replacement unit cost, cc = Corrective replacement unit cost, N(tp) = Number of expected failures
within the interval (0, tp), R(tp) = Probability that the equipment reaches the preventive replacement
time, F(tp) = Failure probability, M(tp) = Failure distribution.

(b) Partial replacement (minimal repairs and normal repairs)

If by replacing after a certain time interval or repairing a component that has failed, the system
goes back to normality at a minimum cost, the model is called minimal repair. The total cost per unit



www.manaraa.com

Energies 2019, 12, 225 12 of 41

time is given by Equation (11). The goal is to find the number k of PPRs and the time Ti that minimize
the TEC, assuming the following [16,49]:

• The failure rate is an increasing function.
• The minimal repairs do not affect the failure rate of the system.
• The minimal repair cost is lower than the cost of replacing the entire system.
• The total PR of the equipment is performed after (k − 1) PPRs.

TEC(k, T1 . . . TK) =
(k− 1)Cpp + Cp + Crm ∑k

i=1
∫ Ti

0 λi(t)dt

∑k
i=1 Ti

(11)

where Cpp = Preventive Partial Replacement (PPR) unit cost, Crm = Minimal repair unit cost, Ti = Time
to perform the PPR and λi(t) = Failure rate at time t for equipment with (i − 1) PPRs.

For the maintenance model with PPRs and normal repairs, the TEC is given by Equations (12)
and (13). It is based on the same assumption as for the minimal repairs; however, the cost is higher
due to the repairs being complete repairs:

TEC(k, T1 . . . TK) =
(k− 1)Cpp + Cp + Ceic ∑k

i=1 Fi(Ti)

∑k
i=1{TiRi(Ti) + Mi(Ti)Fi(Ti)}

(12)

Mi(Ti) =
∫ Ti

−∞

t fi(t)dt
Fi(Ti)

(13)

where Ceic = Normal replacement (NR) extra unit cost and Mi(Ti) = Mean of the distribution for
equipment with (i − 1) PPRs.

Using Generalized Stochastic Petri Nets (GSPN) with predicates coupled with Monte Carlo
simulations, in [75], the authors model the maintenance of a system of multiple offshore 5-MW turbines
when the logistics are subjected to weather constraints. The proposal allows determination of the
advantages of the age-based predictive maintenance model with imperfect repairs over the corrective
maintenance model. Using the same combination of MatMs and constraints, in [76], the authors
propose a model for simulating periodic, conditional and corrective maintenance of offshore turbines.
According to the study, it can be concluded that the optimal strategy would be the replacement
of subsystems every 5 years. In [77], the authors present a multilevel opportunistic PM strategy.
The proposal includes applying a timely PM and replacing the components that have failed, that
is, PM and preventive replacement are applied. According to this proposal, the total maintenance
costs are a function of the ages of the groups of components and the age thresholds established for
the components.

When after the PM, the repair has been imperfect and the equipment does not recover the failure
rate that it had when it was new, this is known as Imperfect PM (IPM) [55]. The mathematical model
for the TEC of the IPM is given by (14). The goal is to find the size of the intervals hk and the number
of IPMs that minimize the TEC, assuming the following [16]:

• hi is the length of the i-th time interval (i = 1, 2,..., N − 1) in which the IPM will be performed.
• The IPM is performed at times h1, h1 + h2, . . .
• The PR is performed after interval N.
• If an unexpected failure occurs between two IPMs, a minimal repair is applied.
• After a PR, the equipment recovers its original failure rate.
• λ(t) is continuous and increases with time.
• The times that minimal repairs, PR and IPM have to be performed at are ignored.
• After N intervals, the cycle ends with a PR.

TEC( y1 . . . yN) =
Crm ∑N

k=1
∫ yk
(bk−1 )(yk−1)

λ(t)dt + (N − 1)Cipm + Cp

∑N−1
k=1 hk

(14)
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where yi = Equipment age when the i-th IPM is performed, hk = Size of the intervals, Cipm = IPM unit
cost, N = Number of intervals and bk= factor of decrease in the useful life of the equipment, due to IPM:

bk : 0 = b0 < b1 < b2 < b3 . . . < bk . . . < bN−1 < 1

In [55], the authors proposed a maintenance strategy for a single-component system that exhibits
failures in the maintenance performed, which can be detected by periodic inspections. The study [78]
proposes a strategy composed of predictive and corrective maintenance, considering both opportunistic
maintenance and imperfect maintenance. According to the simulation, the PR strategy has a negative
influence on the costs such that opportunistic maintenance has greater advantages, especially when
taking advantage of the downtime for applying maintenance to multicomponent systems with the
same maintenance team. The optimal opportunistic maintenance reliability threshold is determined
via the Fruit Fly optimization algorithm.

An alternative to the age-based maintenance model is to model the system degradation via
stochastic models [79]. Work [80] presents an opportunistic maintenance model based on the conditions
of offshore wind turbines blades that are subjected to degradation (fatigue, wear and cracks). When the
length of the crack exceeds a certain threshold, a complete repair is performed to the damaged blade,
whereas PM is applied to the other blades; otherwise, PM is scheduled. The maintenance model
proposed is evaluated over the lifecycle of the system using the Monte Carlo simulation technique.
In [81], the authors define a CBM model for optimizing the inspection and maintenance intervals that
minimize the cost function of multiple electrical and mechanical components of wind turbines, each
of which have their own stochastic degradation process. The aging and deterioration are statistically
modeled. [82] presents a proposal based on the Petri net method for predicting the condition of
the components of a wind turbine and investigates the effects of different maintenance strategies
via quantification of the reliability, degradation, inspections, maintenance actions, and number and
duration of system downtimes.

3.2. Models According to the Number of Components

A WT consists of a set of components, among which there is economical, structural and stochastic
dependency. If a component fails, the system fails; therefore, a multicomponent system can be treated
as a single unit. In addition, the logistics for providing maintenance to a single component, especially
if it is located in areas of difficult access, can be too expensive, so it is preferable to take advantage of
the availability of the resources (supplies, tools and technical personnel) available at a certain place
and time to provide maintenance on multiple components (each one with a different strategy) of a
WT or on a component present in all the WTs of a WF. The block maintenance strategy can include
minimal repair after a failure, complete repair or replacement, imperfect repairs and opportunistic
inspections due to the occurrence of failures [53,56,83,84].

Reference [83] proposes a block replacement strategy with minimal repairs after a failure for a
complete system based on the strategy for a single component. The analysis considers periodic PM
and CBM. The periodic maintenance model is a generalization of the block replacement strategy with
minimal repairs when a failure occurs. A scheduled downtime is performed for the replacement, PM
or repair of the components at each interval η × τ, where η is a control parameter that differs for
each component. If an unexpected failure occurs, a minimal repair is applied to avoid downtime, and
the replacement is performed in the next τ. It is assumed that after maintenance is performed, the
component is as good as new and that its failure rate is the same that before the failure. When CBM
is applied, the deterioration is modeled by the Delay Time Model (DTM), which is a semi-Markov
process (three states), whereas the time during which a component remains in a good state after
being replaced (time-to-defect) is assumed to be random and exponential. When a defect appears in a
component, the time to failure (delay time) is generally distributed, and inspections are performed
every η × τ times. If the component is found to be defective during an inspection, it is replaced,
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whereas if an unexpected failure occurs, a minimal repair is applied, and the component is replaced
in the next scheduled downtime. [85] proposes an opportunistic PM strategy for two-unit systems,
considering two states for the first unit and three states for the second unit. The latter is subjected to
inspections, both periodic (every η × τ) and when the first unit fails. If a defect is detected, a PR is
immediately performed. Considering a five-component WT with economic dependence, [86] proposes
a mathematical model for maintenance based on the effective age of the components, determined after
periodic inspections. The model considers PM and replacement.

3.3. Impact Models

Components or systems subjected to strong loads or shocks that can lead to failures are modeled
by the models for systems subjected to impacts. The cost model is given by Equation (15), assuming
the following [49]:

• The system is subjected to random impacts.
• Each impact causes a random amount of damage.
• The failure is cumulative.
• The time between impacts and the damage caused are random variables with distribution

functions FX(t) and GX(t), respectively, and depend on the cumulative damage at time t, X(t).
• After a failure, the system is replaced by an identical and new system at a cost c(∆). ∆ refers to

the failure.
• If the deterioration reaches a certain value X, then the replacement can be performed prior to the

failure at a lower cost compared to if it is performed after the failure.
• The age at which the maintenance must be performed is ignored.
• It is assumed that the time that it takes to perform the replacements is negligible.
• A new cycle begins with each replacement.

TEC(T) =
P{T < ζ}E[c(X(T))] + P{T = ζ}c(∆)

E[T ∧ ζ]
(15)

where ζ = Time to failure, T = Time to replacement and T ∧ ζ = Minimum of {ζ, T}.
For the systems subjected to both degradation and catastrophic shocks, the model applied is the

Degradation-Threshold-Shock (DTS) model [54]. Assuming that the wind turbine blades are subjected
to fatigue or quasi-static loads, study [87] develops a model for predicting the RUL, in addition to the
progressive damage due to microcracking and adhesive debonding of the blades. In [88], the authors
design a CBM-based model for the multiple components of a wind turbine subjected to stochastic
degradation. The interactive degradation processes due to normal and stochastic shocks are modeled
by nonstationary gamma and nonhomogeneous Poisson processes, respectively. This proposal also
analyses the relationship between the expected costs, according to the inspection intervals under
different levels of degradation and shock.

3.4. Inspection Models

With the goal of identifying the defects and repairing them before they trigger the breakdown of
a component or system, one of the maintenance strategies is inspections. These can be online, offline
or manual, through the CMS or a combination of these alternatives [59]. The inspections cost will
determine the maintenance strategy applied. According to [89], there are several types of inspections,
and each one differs in the type of failure it detects, the error probability and the execution frequency.
In this context, the inspections can be classified as follows:

(1) Partial inspections detect without error only some types of system failures.
(2) Imperfect inspections can detect some types of system failures (assuming that a failure is

detectable by imperfect inspections).
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(3) Perfect inspections detect all system failures without error.

According to [49], the basic inspection model assumes the following:

• Inspections are performed at times x1, x2, x3, . . . ,xn.
• When a failure is found, the equipment is replaced, and the cycle begins again.
• The equipment failure is only known after the inspection.
• The inspections do not deteriorate the equipment.
• Each inspection has a cost Ci.
• The cost per unit time associated with an undetected failure is Cf.

• The corrective replacement (CR) cost is C.
• When an unexpected failure occurs between inspections, at time ti, the inspection cycle cost is

given by Equation (16), and the replacement is performed when the next xn is reached. The cost
of this cycle is given by Equation (17).

• The TEC of the maintenance model is obtained by Equation (18); the goal is to find the number of
inspections that minimizes the cost:

C(ti, xn) = nCi + (xn − ti)C f + Cs (16)

CE(t, x) =
∫ xn

xn−1

[
nCi + (xn − ti)C f + Cs

]
f (t)dt (17)

TEC( x1, x2, . . . , xn) =
∑∞

n=1
∫ xn

xn−1

[
nCi + (xn − ti)C f + Cs

]
f (t)dt∫ ∞

0 t f (t)dt + ∑∞
n=1

∫ xn
xn−1

(xn − t) f (t)dt + Ts
(18)

One of the most important topics is determining the period t with which the inspections have
to be performed; for this reason, several models have been developed, among which are the delay
time model [57]. The delay time, Equation (19), is known as the time elapsed from when a failure is
identified until maintenance is applied before the component breaks down. For the construction of
the models that relate t to the downtime/time and cost/time, it is necessary to obtain the probability
density function f (h) from the failure statistics [90,91]. The model for determining the breakdown
probability, downtime and cost for imperfect inspections is composed of (20)–(22) [90]:

h = HLA + HML (19)

b(T) =
∫ T

h=0

T − h
T

f (h)dh (20)

D(T) =
1

T + d
[kTdb b(T) + d] (21)

C(T) =
1

T + d
[kT{cbb(T) + ci[1− b(T)]}+ I] (22)

where: h = Delay time, HLA = How long ago the failure could have been noticed by an inspection,
HML = How much longer the repair can be delayed, b(T) = Probability that a failure turns into
a breakdown, D(T) = Expected downtime per unit time, k = Arrival rate of defects per unit time,
db = Average downtime for breakdown repairs, d = Fixed period, cb = Average breakdown cost,
ci = Inspection repair costs and I = Cost.

For the imperfect inspections, the models include the factor (1 − β), which represents
the probability of not identifying the defect during the inspections, and Equation (19) becomes
Equation (23). R is given by (24):

b(T) = 1−
{∫ T

y=0

∞

∑
n=1

β

T
(1− β)n−1R(nT − y)dy

}
, d� T (23)

R(x) =
∫ ∞

x
f (h)dh (24)
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where y = Time elapsed until a defect appears after an inspection and β = Probability of identifying a
certain defect during an inspection.

3.5. Maintenance Models Based on Markov Models

Unlike most of the models that assume that a system can only be in two states (operating or out
of service due to a failure), the Markov models assume that a system can transit between several states,
following a continuous-time stochastic process [33]. When the model assumes that the process can only
transit between three states (operating, with failures and out of service due to a failure), the model is
called semi-Markov [45,49,55]. Figure 7 shows a classification alternative for variants that can include
Markov chains.

Considering the stochastic behavior of the weather, the difficult accessibility conditions and the
constraints on the maintenance resources, study [71] uses Markov chains for modeling the corrective
maintenance and its impact on the turbine availability of an offshore WF. The transition between
the three states assumed by the model is obtained through an algorithm based on a Poisson process.
The average availability is obtained by solving the transition matrix of the model. In [92], the authors
propose a six-state Markov model for quantifying the impact of maintenance of the components
of a wind turbine on the downtime and the failure risk. The transition and the failure risk during
the life cycle stages of the equipment, in addition to during the failure and maintenance stages, are
determined by a survivability index, whereas the performance and the failure risk probability at
different maintenance intervals are modeled by the transition rate probabilities. To construct the model,
the failure rate and the downtime data are used. In [93], the use of the weather conditions and the
downtime data is proposed for forecasting the availability of a wind turbine through a model based
on cyclic non-homogenous Markov chains consisting of 16 states. Based on the conditions revealed
during the inspections and using the semi-Markov model, the study [94] proposes a strategy that
minimizes the maintenance cost of a wind turbine gearbox. To determine the optimal strategy, on
top of the inspections, the model also considers the equipment deterioration, minimal repairs and
PM. In [95], the authors define a stochastic model based on the Partially Observed Markov Decision
Process (POMDP) with heterogeneous parameters and solved by the backward dynamic programming
method to determine the strategy that minimizes the gearbox maintenance costs, considering the
variable weather conditions under which the wind turbine operates. According to the authors, the
model demonstrates the advantages of dynamic CBM over a static CBM strategy.
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3.6. Models Applied to the Logistics of Operation and Maintenance

An important factor in making decisions about the maintenance strategy is related to logistics,
which according to [96] is responsible for “the flow of materials from suppliers into an organisation,
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through operations within the organisation, and then out to customers.” From the conceptual point of
view, to understand the effect of transport on production costs, we can refer to [97], where the problem
of minimizing costs when transporting a product from certain production plants to different points of
distribution or consumption is analyzed.

As far as the wind industry is concerned, for [98], logistics refers to the planning, acquisition,
storage and transportation of WTs or individual components, for which it may be necessary to use
trailers, helicopters, rubber boats, jack-up and crane vessels. Wind turbine equipment is large and
heavy, so, for land transport it is necessary roads that support heavy trucks. If roads are in poor
condition, the transport equipment will be damaged, increasing maintenance costs. Rail is cheaper
than moving tonnage by road, but this type of transport is limited by low railway penetration, in
addition, road transport for the initial and final part of the trip, could be used. The maritime alternative
is used for international transport and offshore WF. Air transport is faster, however, it is the most
expensive, cannot be used for all components and its use depends a lot on weather conditions [98].
In this context, one of the reasons why the block maintenance strategy is preferred, is precisely to
take advantage of the availability of transport and technical personnel, which gains more relevance
when it comes to offshore WF, where in addition to the necessary resources (facilities, spare parts,
transportation and human resources) that are used in onshore WFs, the planning and use of maritime
and air transport is necessary.

In order to optimize the supply chain, logistics, maintenance programming and costs in the wind
industry, there are some approach that use several MatMs. Thus, as in offshore WFs, O&M operations
depend on weather conditions, in the work of [99], maintenance and climate statistics are used in a
Monte Carlo simulation model to determine the availability (weather windows) of an offshore WF
based on wind speed, wave height and visibility. Transport alternatives used are helicopter and rubber
boat. In [100] a Mixed Integer Linear Programming (MILP) model is proposed, through which the
supply chain (location and plant size) is determined, as well as the use of the vessels, depending on
the weather periods, in such a way that the accumulation and underutilization of resources during
periods of inactivity is minimized. In the work of [101], Generalized Stochastic Petri nets (GSPN)
coupled with Monte Carlo, is used to simulate O&M planning when several types of maintenance
are applied and considering weather windows, age reduction, logistics times and costs. This research
concludes that Preventive Maintenance (PM), both CBM and age dependent with imperfect repair
maintenance, decreases wind turbine failures rates and reduces almost all mean costs compared to
corrective maintenance (CM). The logistics related to the WFs is a very specialized and extensive field,
to deepen on this topic it is suggested to consult the references [102–104].

A very important complement related to the operational part of maintenance is the planning
of activities. According to [16], the models for optimizing planning include Material Requirements
Planning (MRP), the critical path method (CPM), and Program Evaluation and Review Techniques
(PERT). The application of each model depends on the planning horizon, as reported in Table 1.

Table 1. Maintenance scheduling models.

Term Time Model

Long 3 months–1 year MRP, CPM
Medium Weekly PERT, CPM

Short Daily -

4. Methodologies and Mathematical Models Applied to the Detection, Diagnosis and Prognosis
of Failures

Among the models used in the tactical and operational strategy, the ones focused on failure
diagnosis and prediction occupy a very important place; therefore, Section 4.1 is dedicated to the
models used for failure prediction and diagnosis in the different WT components, whereas Section 4.2
is focused on the failure prognosis and RUL, emphasizing soft computing models.
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4.1. Detection and Diagnosis

It is possible to perform a failure diagnosis in WTs using models included in the following
techniques: signal analysis, model-based and data-based classes [105]. Figure 8 includes some models
corresponding to the first two options; the third will be addressed in Section 4.2.
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Because wind turbines are located in remote areas and at considerable heights, failure monitoring,
detection and diagnosis are usually performed via the analysis of the signals obtained from the sensors
that are part of the CMS. References can be found on the application of many MatMs (white, gray
and black box) for the detection and diagnosis of failures in the different parts of a wind turbine
(see Table 2). However, despite the variety of available signals, the use of vibration predominates in
the wind industry, as not only is vibration produced in all the wind turbine parts (from the blades to
the tower), but also, it provides early signs of failures; therefore, there is more time to plan and execute
the corrective actions [46].

Table 2. References on Applications of mathematical models (MatMs) for Failure Diagnosis in
Wind Turbines.
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Artificial neural network (ANN) [110]
Electromechanical model [111] [111] [111] [111] [112] [111] [111]
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Rule induction ANN [113]
Fast Fourier transform (FFT) Wavelets [114,115] [114]

Mahalanobis distance ANN [116]
Morlet continuous Wavelet
Wigner-Ville distribution [117,118]

Wavelets Immune genetic algorithm [119]
Spectral kurtosis [120]

Fuzzy logic [121]
k-Nearest neighbor (k-NN) [122]

Support vector machine (SVM) [119,122]
k-Means [122]

Nonlinear state estimation technique [123]
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Table 2. Cont.
T

he
rm

al

Data mining [124,125] [125] [41,124,125] [125]
Autoregressive model ANN [126]
Bagging, ANN, kNN Genetic

programming [127]

Continuous time Markov chain
Monte Carlo [128]

Autoassociative Kernel Regression
(AAKR) Moving window statistic [129]

ANN [130]

A
co

us
ti

c

Continuous time Markov chain
Monte Carlo [127]

Wavelet transforms Wigner-Ville
distribution Hilbert transforms [131] [132]

Support vector regression (SVR) [133]

Due to the variability of the weather conditions under which wind turbines operate, the methods
for transient signal analysis are the norm, especially with the use of wavelets. The study of the
spectrum by the models included in Figure 8 allows detection and diagnosis of failures according to the
magnitude of the components of the fundamental wave of the signal. As an example, several types of
failures and their associated components according to the cause and the part of the electrical generators
can be found in [134–137]. In addition, each of the WT parts can require a specific methodology.
An example is the gearbox, whose maintenance is also based on online and offline analysis of the
oil conditions [14]. Another example is the electric generator, for which there is a variety of specific
methods for the detection and diagnosis of failures according to each of the parts [105,135–139].
The followed procedure is similar for all the signal types and is shown in Figure 9.
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4.2. Prognosis of Failures

The MatMs applied at the tactical level and analyzed in the previous sections (most of them
being white box models) assume many idealizations (materials, design, labor, working conditions,
and contingencies), so it is difficult to expect that the results obtained by the model coincide with
the real behavior. In addition, the models considered until now are not capable of addressing the
lack of information and uncertainty that accompanies any process, much less learning autonomously.
Currently, to obtain these characteristics, the tendency is to resort to the models grouped as soft
computing or computational intelligence, which are a set of AI techniques, most of them being black
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box or hybrid models that use a large amount of MatMs and computational programs that aim to
emulate the manner in which living organisms (bees, ants, fish, cells and humans) learn, reason, behave
in groups, transmit traits from generation to generation and make optimal decisions [141–143].

In the area of WT maintenance, the prognosis usually refers to failures, RUL, availability, energy
demand and production [144–155]. Based on the division of soft computing into approximate reasoning
techniques and optimization techniques, which is done in [156], presented in Figures 10–12 is an
alternative classification of the most-used MatMs for such purposes [142,157–163]. Currently, the use
of AI models is the norm in the wind industry, and they are applied at all levels, from the strategic and
tactical models (RCM, FMEA, FMECA, etc.) discussed in Section 2 [36,164,165] to failure detection,
diagnosis and prognosis and RUL determination [17,166]. AI techniques represent a new step in
the evolution of MatMs such that once they are trained, they learn autonomously, have a life of
their own and are capable of performing prognoses based on the natural behavioral pattern of the
analyzed data, whether historical or obtained in real time. This is known as machine learning, [167,168].
The application of these methodologies has been greatly facilitated owing to software packages such
as LabView, Python, SPSS, R and MATLAB. Of the large amounts of models included in Figures 10–13,
not all have obtained the same degree of attention, with the models based on SVMs, ANNs, fuzzy
logic and Bayesian networks and the hybrid models highlighted, which are briefly described in the
remainder of this section. Figure 13 shows the manner in which MATLAB [160] classifies the models
used for its machine learning application, in addition, for space reasons, several references regarding
the application of AI models have been included in Table 2, according to the WT component to which
they are applied.
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4.2.1. Support Vector Machines (SVMs)

Belonging to the nonparametric models and to supervised learning techniques, SVMs are based
on statistical learning theory (SLT) and structural risk minimization (SRM). These models can be used
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for classification problems (support vector classification) and for regression problems (support vector
regression, SVR). Regarding the first option, SVMs classify a set of data according to a certain subset or
class to which they belong, and the most basic model assumes two classes, labeled −1 and 1. If each
element of the data set can be correctly assigned to one of these labels, it is said that the samples can be
classified by a set of functions. Generalization of the model is only possible if no significant errors are
made in terms of the precision obtained with the training data and the capability of the model to learn
with other data sets.

The separation of classes or subsets can be performed using linear or nonlinear hyperplanes
(linear and nonlinear learning). For the first option, it is assumed that there is a linear hyperplane
H (also called the decision hyperplane) of the largest possible margin such that Equation (25) is
satisfied. The data subset (class 1) is located on one side of the hyperplane H, whereas the second
subset (class − 1) is located on the opposite side. The hyperplane H is located between hyperplanes
H1 and H2 (Equations (26) and (27)). The points located on H1 and H2, which are also characterized as
being the points closest to H, are called support vectors. Each of the subsets obtained after the first
classification can be divided again into subsets:

H : w·x− b = 0 (25)

H1 : w·xi − b ≥ 1, yi = 1 (26)

H2 : w·xi − b ≤ −1, yi = −1 (27)

When the data cannot be linearly classified in their original space, an SVM creates a nonlinear
separation hypersurface, in which the linear classification can be applied again. The nonlinear
transformation can be performed by sigmoidal and polynomial functions, among others. Given
that there will be an error (ε) between each sample and the ideal hyperplane, the goal is to find the
support vector for which the sum of the classification errors is minimized. Considering the error ε

Equation (26) becomes Equation (28). Construction of the separation hyperplanes by nonlinear functions
(such as polynomials of degree greater than two) could lead to obtaining decision hyperplanes in spaces
with many dimensions, in which it would be very complicated to perform the operations with vectors.
Fortunately, the hypothetical decision space can be determined by an adequate kernel function, given
in [170,171]. The use of the kernel allows finding a linear solution in the higher-dimensional feature space
that is equivalent to a nonlinear solution in the original input space, whose dimensions are lower [119]:

H1 : w·xi − b ≥ 1− εi, εi ≥ 0 (28)

In the wind industry, the SVM method is used to develop solution proposals for problems in
different areas. The study [133] estimates and predicts the noise level produced by a WT as a function
of wind speed via SVR. The kernel functions used were polynomials and the Radial Basis Function
(RBF) since, according to the author, they are more efficient. [122] applies SVM to the vibration signal
to identify the failure patterns of the bearings in WTs. In [172], the authors process the vibration signal
through the Hilbert–Huang transform (HHT) method and apply SVM to detect and diagnose the
bearing failures. The bearing degradation and RUL are obtained via SVR. To obtain a failure classifier,
the SVM model is trained with historical observations. When the vibration signal is measured in real
time, the SVM classifies the magnitudes of the frequencies corresponding to the inner and outer tracks
and the balls; in this manner, failures are detected and diagnosed.

4.2.2. Bayesian Networks

Rule-based systems have limitations in representing knowledge and in reasoning under conditions
of uncertainty. Therefore, it was necessary to replace the inferences and assumptions characteristic
of the traditional logical reasoning with a probabilistic interpretation of the relationship between the
propositional variables and causes, giving rise to Bayesian Networks (BNs). To solve such problems,
there can be several alternatives, each of which (according to the BN model) is assigned a probability



www.manaraa.com

Energies 2019, 12, 225 24 of 41

(which can be obtained via statistical analysis of the available data); they are treated according to
probability theory (Bayes’ rules), which is why this AI model is also known as a probabilistic network,
as presented by [173,174]. The BN structure follows the Markov chain properties [175].

BNs are part of the models known as knowledge-based or model-based systems. Their structure
is represented by a type of graph known as a Directed Acyclic Graph (DAG), in which the nodes
symbolize the prepositional variables and the dependency between variables (cause-effect relationship)
is represented by an arrow along with the corresponding probability of occurrence. The language by
which the events and their probabilities are expressed is Boolean algebra, and therefore, each variable
will have a conditional probability table, as presented in [173,174].

Based on previously collected data, visual inspections and data obtained in real time, ref. [176]
proposes a model that replaces the semiannual scheduled maintenance and considers periodic
inspections and repair to control the degradation induced by fatigue. The proposed model for planning
and learning in uncertain dynamic systems is based on the Bayes-adaptive partially observable Markov
decision process model and is capable of learning from the environment, updating the distribution of
the model parameters and selecting the optimal strategy under conditions of uncertainty. In [177], the
authors apply maximum the likelihood method of BNs to obtain the transition probabilities between
the states of a semi-Markov model used for estimating the RUL of the blades of a WT. Using the
real and observed values of the wind turbulence intensity and RPM of the electrical generator, [178]
constructs a BN model that can calculate the failure probability at any point in time and the impact
of the possible maintenance actions and quantify the deterioration level during a time period for the
gearbox of a WT. The strength of the dependence of the variables used was quantified via a Kalman
filter. To predict the failures of the wind turbine components (blades, gearbox, generator, main bearing,
pitch and yaw), in [179], the BN model is used, trained with the available data on meteorological
variables, failure records and the technology used in WTs. In [175], the authors perform a specific
study regarding BNs and include a section in which a considerable amount of applications to different
areas of the wind industry can be found.

4.2.3. Artificial Neural Networks (ANNs)

ANNs are MatMs that aim to emulate the physical structure, operation and capability of biological
neurons to establish relationships between the input and output signals. If for the magnitude of
the linear combination (weighted sum) of each input (dendrites), multiplied by a factor or weight
(synapsis), the activation function (linear, stepped, triangular, Gaussian, sigmoidal, etc.) reaches a
value equal to or higher than the threshold, then the neuron’s output (axon) will be activated. An ANN
is a set of neurons (equivalent to a biological nervous system) organized into input layers, hidden
layers and output layers. The network analyzed as a whole has a very similar structure to a neuron.
The output of the neurons of a layer is converted into the input of the neurons of the following layer
by connecting links multiplied by a factor or weight. Through the use of a large amount of previously
collected data, the neurons are entered in the manner in which they have to proceed (“think”) such
that the ANN can then generalize and perform reliable predictions based on the reading of data in
real time, as presented in [180–183]. When the ANNs have a large number of layers, these models are
called deep learning models [184]. The higher the numbers of variables and layers are, the higher the
computational effort required.

There are several types of ANNs, which can be classified according to several criteria. Presented
in Figure 14 is a possible classification, leaving references [180–186] for further insight into the vast
theory and practice of these types of models.

According to [186], highlighted among the advantages of ANNs are adaptive learning,
self-organization, tolerance to incomplete data or presence of noise and easy implementation, as
there are even chips specialized for ANNs. However, ref. [183] also mention same disadvantages,
such as training being needed for each problem, the need to perform multiple tests to achieve an
adequate architecture, the training being long and possibly consuming several hours, the need for a
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large amount of data to train the network, the lack of a specific model being followed, and the internal
dynamics of the system being unknown such that the results appear complex for an outside observer.

In recent years, these types of MatMs have been widely used to make use of the database of the
SCADA system, through which the records of temperature, vibration and current can be accessed, in
addition to the atmospheric variables and energy production of the WTs. Based on the data collected
by the CMS, ref. [44] proposes a CBM strategy (based on the failure probability) in which, due to the
dependency between the components of a WT, they are considered as a single unit, and the presence
of the maintenance team in a WF for performing maintenance on multiple turbines instead of a single
WT is also considered. The distribution of the time to failure is predicted by a feedforward neural
network, composed of an input layer, two hidden layers and an output layer. The ANN input data are
the ages of the components at the moment of the inspection and in the previous inspections, whereas
the output is the life percentage of the component, on which the time to failure is based on. With the
time interval between maintenances, the age of the component at the moment of the inspection, the
time to failure and the standard deviation of the time to failure distribution (a normal distribution is
assumed) predicted by the ANN, the failure probability at a certain instant is obtained.

Contrary to the models that use the life cycle to predict the RUL of a component, study [187]
proposes the prediction of the RUL of the gearbox bearings of a WT through the combination of the
short-term prediction by an ANN with the estimation of the long-term tendency based on polynomial
fits. For the prediction by the ANN, a three-layer network is used (input, hidden and output), and
the number of outputs is the same as the inputs and depends on how many variables (characteristics)
should be predicted. For the referred to study, 8 time characteristics were used (mean, RMS, variance,
square root of amplitude, skewness factor, kurtosis factor, waveform factor and margin indicator), as
were the energy of the first four bands of the vibration signal frequency spectrum. Ref. [186] presents
the specific state of the art regarding the different types of ANNs combined with other MatMs applied
to the different areas involved in the wind industry, that is, design optimization (WTs and wind farms),
forecasting and prediction (wind speed, wind power, noise, torque and power factor), WT control
and failure diagnosis and prediction (gearbox, bearings, generator, rotor, blades and electrical and
electronic control).

4.2.4. Fuzzy Logic

By using MatMs with different probability distributions and extending the classical digital logic
theory, fuzzy logic aims to emulate the human behavior capable of making decisions under conditions
of uncertainty due to there being few data, incomplete data or heterogeneous data, as in the case of
big data. When facing phenomena whose truthfulness and falseness cannot be completely defined,
it is not possible to apply classic logic; consequently, there has arisen an alternative of constructing
diffusive control systems, which through a set of IF-THEN propositions, combine fuzzy variables
to obtain a response or output. For this, based on the concept that when a property that identifies
the elements of a set is clear, the absolute belonging, or not, of an element to such a set is perfectly
defined, and according to the traditional mathematical logic, values of 1 and 0 will be assigned to it,
respectively. When the property is not clear, according to the fuzzy logic theory, the membership is
given by a characteristic function or membership function, whose magnitude (membership degree)
ranges from 0 to 1. Depending on the relationship between the variables of the analyzed phenomenon,
the membership of an element to a set can be obtained by several functions (triangular, trapezoidal,
Gaussian, double Gaussian, bell, S, Z, π, sigmoidal, singleton or fuzzy point), whose names refer to the
graph of the function used, as presented in [89,124,133,134,188].
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In addition to solving nonlinear problems, fuzzy logic is characterized by its flexibility for
handling the uncertainty expressed through natural language (numerical values between 0 and 1 are
assigned to linguistic variables expressed with words or sentences). Except for the contradiction and
exclusion principles, most of the classical set theory concepts are also applied to fuzzy sets, and due
to the isomorphism between set theory, propositional logic and Boolean algebra, the fuzzy rules are
translated into relationships between fuzzy sets and operations by propositional logic and Boolean
algebra. Each of the rules and IF-THEN propositions represents a fuzzy set with its characteristic
function that measures the degree of truthfulness of the relationship between the dependent and
independent variables, as presented by [73,188,189]. Even though there are a large number of fuzzy
models, they all share the same basic scheme shown in Figure 15.
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Whether individually or forming hybrid models with ANNs or genetic algorithms [188], fuzzy
models have found application in all the fields of science through the development of control systems
of all the equipment of homes, industries, hospitals, banking and even space travel. Wind energy
is not the exception, where fuzzy models are used in areas such as the design of control systems of
WTs [192,193] and in binary and multiclass classification models for the detection of failures in the
different components [194]. Ref. [73] proposes the Markov fuzzy reward model for predicting the
reliability based on the wind energy availability. In addition, the model can predict the number of
failures, average time to failure and failure probability with sufficient time to plan the maintenance.
Unlike the studies that are only based on the available data regarding wind speed and wind power, the
model proposed by [73] is capable of addressing the lack of data and the uncertainty presented when
trying to calculate the wind power as a function of the wind speed stochastic behavior, owing to fuzzy
set theory. The model considers both the WF and the energy demand as multistate systems modeled
by Markov chains, in which the transition between states is performed by a triangular fuzzy number.

In [195], the authors develop a fuzzy clustering proposal and the Mahalanobis distance for
the failure detection of a WT. Based on the component failure and weather variables (humidity,
temperature, wind speed and direction), a model of the power curve is obtained by fuzzy clustering
and parametric fitting techniques; then, the location and distance to the warnings and alarm curve
recorded by the SCADA are analyzed. In [194], the authors use the fact that the frequency spectrum
harmonics are sensitive to the load variations to locate the broken bars of the yaw drive induction
motor of a WT. The severity of the failure is measured via a fuzzy model that uses the RMS values of
the Hilbert transform envelope of the current signals obtained from the frequency inverter and filtered
by a discrete wavelet transform and empirical modal decomposition.
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4.2.5. Hybrid Models

When the available information about a system consists exclusively of numerical data and there is
not a defined mathematical model for explaining the relationship between the data, the use of ANNs is
appropriate, whereas when the data follow a set of rules or can be explained by some types of functions,
fuzzy logic can then be applied. Given that each of the models discussed thus far have advantages and
disadvantages, it is very likely that the best alternative for avoiding the inconsistencies that a system
based on a single model could present would be to develop a hybrid system between two or more
models. For this reason, it is common to combine the learning capability of ANNs and the flexible
knowledge-representational capability of fuzzy logic. In this manner, fuzzy-neural hybrid systems
are obtained (the inputs, weights, linear combination of inputs, activation function and outputs of the
ANN are fuzzy models, with which the ANN capability for using the knowledge rules that govern a
system is improved). In neural-fuzzy systems, the ANNs are used to provide the fuzzy models with
the learning capability (the fuzzy logic membership function is determined by the ANNs). Figure 16
shows a classification of the different types of models derived from combining ANNs and fuzzy
logic. Although these are the models most used in the maintenance of WTs, especially the adaptive
neuro-fuzzy inference system (ANFIS), the hybridization possibilities between other models could be
infinite. Additional examples are BNs with ANNs, genetic algorithms with fuzzy logic and BNs with
ANNs, as presented by [188,189,192,196–198].

In addition to hybrid models, another strategy is the use of concurrent models (see Figure 16),
which tends to identify the most efficient model or obtain specific results according to the characteristic
of each model used. Ref. [124] uses the 10-min data collected by SCADA of the wind, performance,
vibration and temperature parameters of 27 WTs such that on this basis, it can predict the failures
of the electrical generator brushes 12 h in advance. The models used were k-NN, SVM, Multilayer
Perceptron (MLP) and boosting tree, of which the latter was the most efficient. In [199], the authors
propose an ANFIS and particle filtration (PF) for the prognosis of the failures and RUL of the WT
gearbox. ANFIS learns the state transition function of the fault feature extracted from one of the phases
of a generator connected to the gearbox, and based on this and on new failure data, the PF algorithm
predicts the failures. Ref. [200] uses k-NN, a decision tree, quadratic discriminant analysis and ANN
for detecting and diagnosing the delamination levels of the WT blades. According to the authors, the
best results were obtained with the ANN.

5. Conclusions and Recommendations

Current WTs are very sophisticated systems that require knowledge of several engineering areas
and that demand a considerable initial investment (e.g., measurement study of the wind resource, study
of feasibility, permits, wind turbines, civil works and electrical networks); however, after installation,
the costs are reduced to those concerning O&M, and their magnitude will depend on the financial
success of the project. For this reason, given the growing importance of renewable energies in the
world’s energy matrix, the wind industry, universities and different organizations have made great
efforts to develop methodologies that consider a great number of variables and complex scenarios
under which a wind farm operates, always with the goal of minimizing the maintenance costs and
increasing the useful life of the installations.

As in other industries, the decisions made at the strategic, tactical and operational levels regarding
WT maintenance are based on management models, MMs and MatMs. Over time, these models have
constantly been evolving. At the management level, these models have changed from the simple
decision of whether to perform maintenance to the present situation, in which the philosophy of
total quality, TPM and E-maintenance is applied. Regarding the MatMs, these have evolved from
the Shewart control charts and the analysis of signals in the time domain to the current model of
soft computing and machine learning. In other words, we could say that it has gone from white box
models that can include probabilistic models of failure, wear and remaining useful life time based
on a simple control chart, used for selecting a cheaper strategy, to the use of a large number of black
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box models, which try to emulate the behavior of living beings, with humans being among them, to
perform precise failure diagnosis and prognosis with sufficient certainty and anticipation. The soft
computing and machine learning models are applied in a holistic manner with the big data concept for
a better utilization of a large amount of information that can be obtained from all signals and variables
controlled by the CMS and SCADA.

For several decades, AI has been applied in all human activities, and its usefulness and benefits
cannot be questioned. Currently, there is a discussion regarding the ethical implications of the use of
AI and the dangers that it can represent to the human race. The traditional MatMs are incorporated
into the AI models (ANN, fuzzy and neuro fuzzy) to develop models capable of self-learning. As a
summary of the results of the scientific and technological advances in the O&M area of the wind
industry, their maintenance activities are simplified to a planned work that includes the execution
of specific tasks, once or twice per year, and to constant monitoring (by the CMS) of the wind
turbine conditions. The modern failure monitoring, detection, diagnosis and prediction systems allow
knowing with sufficient anticipation and certainty the RUL and properly scheduling repairs to avoid
production losses.

Despite the large number of publications reviewed in this work, it can be noted that there are
very few works that holistically address the large number of models used in the wind industry.
In addition, whether individually, recurrently or in a hybrid manner, there could be a concentration
of methodologies using models such as SVMs, ANNs and fuzzy logic for developing proposals at
all levels of decision making. Therefore, there is still a great percentage of models whose application
to wind turbines is marginal and that could be the subject of new research, especially using signals
different from those of vibration.

Over time, the current tendency of using large databases with the largest amount of possible
variables for developing hybrid models that possess the advantages of all the available models and that
are capable of obtaining results very close to perfection (100% efficiency and effectiveness: design and
construction, failure detection, diagnosis and prognosis, optimization of activity planning, risks and
cost minimization and use maximization) in regard to wind turbine will increase. The decision making
at all levels will be performed based on the results obtained from systems composed of increasingly
complex black box models, difficult to create and solve for humans but possible to obtain and take
advantage of due to the improvement of AI models and soft computing, in addition to the creation
of supercomputers based on the development of chips specifically designed for running AI models,
which would simplify and drastically reduce the human intervention in the design, construction and
management of the systems.
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AAKR Autoassociative Kernel Regression
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BN Bayesian Networks
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ChA Change Analysis
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CM Corrective Maintenance
COE Cost of Energy
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CR Corrective Replacement
CTA Critical Task Analysis
DAG Directed Acyclic Graph
DFIG Doubly Fed Induction Generator
DFMEA Design Failure Mode and Effects Analysis
DTS Degradation-Threshold-Shock
DTM Delay Time Model
ETA Event Tree Analysis
FFT Fast Fourier transform
FMEA Failure Mode and Effects Analysis
FMECA Failure Mode Effects and Criticality Analysis
FT Fault Tree
FTA Fault Tree Analysis
GSPN Generalized Stochastic Petri Nets
HAZOP Hazard and Operability Studies
HEPS Human Error Probability
HPP Homogeneous Poisson Process
IPM Imperfect Preventive Maintenance
JESS Java Expert Shell System
k-NN k-Nearest neighbor
kW kilo Watts
LCCA Life Cycle Cost Analysis
MatMs Mathematical Models
MLP Multilayer Perceptron
MILP Mixed Integer Linear Programming
MRP Material Requirements Planning
MTBF Mean Time Between Failure
MTTF Mean Time To Failure
MTTR Mean Time To Repair
MW Mega Watts
NHPP Non Homogeneous Poisson Process
NR Normal Replacement
O&M Operation and Maintenance
OPEX Operating Expenditure
PAM Physical Asset Management
PERT Program Evaluation and Review Techniques
PF Particle Filtration
PFMEA Production Failure Mode and Effects Analysis
PLP Power Law Process
PM Preventive Maintenance
POMDP Partially Observed Markov Decision Process
PPR Preventive Partial Replacement
PREMO Preventive Maintenance Optimization
QRA Quantified Risk Analysis
RCFA Root Cause Failure Analysis
RCM Reliability Centered Maintenance
RPN Risk Priority Number
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RUL Remaining Useful Life
SCADA Supervisory Control and Data Acquisition
SCM Supply Chain Management
SLT Statistical Learning Theory
SRM Structural Risk Minimization
SVM Support Vector Machines
SWT Structured What if Technique
TEC Total Expected Cost per Unit Time
TPM Total Productive Maintenance
TQM Total Quality Management
TQMain Total Quality Maintenance
WF Wind Farm
WSA Work Safety Analysis
WT Wind Turbine
MMs Maintenance Models
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